Fault Diagnosis of the Autonomous Driving Perception System Based on Information Fusion

Author:

Hou Wenkui1ORCID,Li Wanyu1,Li Pengyu2

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

2. General Design Department, Beijing Mechanical and Electrical Engineering, Beijing 100005, China

Abstract

The reliability of autonomous driving sensing systems impacts the overall safety of the driving system. However, perception system fault diagnosis is currently a weak area of research, with limited attention and solutions. In this paper, we present an information-fusion-based fault-diagnosis method for autonomous driving perception systems. To begin, we built an autonomous driving simulation scenario using PreScan software, which collects information from a single millimeter wave (MMW) radar and a single camera sensor. The photos are then identified and labeled via the convolutional neural network (CNN). Then, we fused the sensory inputs from a single MMW radar sensor and a single camera sensor in space and time and mapped the MMW radar points onto the camera image to obtain the region of interest (ROI). Lastly, we developed a method to use information from a single MMW radar to aid in diagnosing defects in a single camera sensor. As the simulation results show, for missing row/column pixel failure, the deviation typically falls between 34.11% and 99.84%, with a response time of 0.02 s to 1.6 s; for pixel shift faults, the deviation range is between 0.32% and 9.92%, with a response time of 0 s to 0.16 s; for target color loss, faults have a deviation range of 0.26% to 2.88% and a response time of 0 s to 0.05 s. These results prove the technology is effective in detecting sensor faults and issuing real-time fault alerts, providing a basis for designing and developing simpler and more user-friendly autonomous driving systems. Furthermore, this method illustrates the principles and methods of information fusion between camera and MMW radar sensors, establishing the foundation for creating more complicated autonomous driving systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly diagnosis of connected autonomous vehicles: A survey;Information Fusion;2024-05

2. A Hybrid Fault Diagnosis Method for Autonomous Driving Sensing Systems Based on Information Complexity;Electronics;2024-01-14

3. Autonomous Driving using Residual Sensor Fusion and Deep Reinforcement Learning;2023 11th RSI International Conference on Robotics and Mechatronics (ICRoM);2023-12-19

4. Recent developments, application cases, and lingering issues on the path to a 6G IoT;2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE);2023-11-01

5. Cooperative Environmental Perception Task Offloading for Connected and Autonomous Vehicles;Electronics;2023-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3