Object Detection Based on Faster R-CNN Algorithm with Skip Pooling and Fusion of Contextual Information

Author:

Xiao YiORCID,Wang Xinqing,Zhang Peng,Meng Fanjie,Shao FamingORCID

Abstract

Deep learning is currently the mainstream method of object detection. Faster region-based convolutional neural network (Faster R-CNN) has a pivotal position in deep learning. It has impressive detection effects in ordinary scenes. However, under special conditions, there can still be unsatisfactory detection performance, such as the object having problems like occlusion, deformation, or small size. This paper proposes a novel and improved algorithm based on the Faster R-CNN framework combined with the Faster R-CNN algorithm with skip pooling and fusion of contextual information. This algorithm can improve the detection performance under special conditions on the basis of Faster R-CNN. The improvement mainly has three parts: The first part adds a context information feature extraction model after the conv5_3 of the convolutional layer; the second part adds skip pooling so that the former can fully obtain the contextual information of the object, especially for situations where the object is occluded and deformed; and the third part replaces the region proposal network (RPN) with a more efficient guided anchor RPN (GA-RPN), which can maintain the recall rate while improving the detection performance. The latter can obtain more detailed information from different feature layers of the deep neural network algorithm, and is especially aimed at scenes with small objects. Compared with Faster R-CNN, you only look once series (such as: YOLOv3), single shot detector (such as: SSD512), and other object detection algorithms, the algorithm proposed in this paper has an average improvement of 6.857% on the mean average precision (mAP) evaluation index while maintaining a certain recall rate. This strongly proves that the proposed method has higher detection rate and detection efficiency in this case.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image processing and machine learning for diagnosis and screening of craniosynostosis in children;Interdisciplinary Neurosurgery;2024-06

2. Design of fine motion control system for aerobics athletes based on light imaging equipment detection and image processing technology;Optical and Quantum Electronics;2024-01-31

3. Pavement Distress Detection Using Street View Images Captured via Action Camera;IEEE Transactions on Intelligent Transportation Systems;2024-01

4. Deep learning applied solid waste recognition system targeting sustainable development goal;Machine Intelligence in Mechanical Engineering;2024

5. NNDcn-Neural Network Based Deep Crowd Network for Crowd Count;Proceedings of the 6th International Conference on Communications and Cyber Physical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3