Comfort Study of General Aviation Pilot Seats Based on Improved Particle Swam Algorithm (IPSO) and Support Vector Machine Regression (SVR)

Author:

Zhang Mengyang1ORCID,Zhang Xuyinglong2,Gao Shan1,Zhu Yujie1

Affiliation:

1. Mechanical and Electrical Engineering College, Northeast Forestry University, Harbin 150040, China

2. Materials Science and Engineering College, Northeast Forestry University, Harbin 150040, China

Abstract

Little work has been carried out to predict the comfort of aircraft seats, a component in close contact with the human body during travel. In order to more accurately predict the nonlinear and complex relationship between subjective and objective evaluations of comfort, this paper proposes a prediction method based on the Improved Particle Swarm Algorithm (IPSO) and optimized Support Vector Machine Regression (SVR). Focusing on the problems of the too-fast convergence and low accuracy of the traditional particle swarm algorithm (PSO), the improved particle swarm algorithm (IPSO) is obtained by linearly decreasing the dynamic adjustments of inertia weight ω, self-learning factor c1, and social factor c2; then, the penalty parameter C and kernel function parameter σ of SVR are optimized by the IPSO algorithm, and the comfort prediction of IPSO-SVR is established. The prediction accuracy of IPSO-SVR was 94.00%, the root mean square error RMSE was 0.37, the mean absolute value error MAE was 0.32, and the goodness of fit R2 was 0.92. The results show that the optimized IPSO-SVR prediction model can more accurately predict seat comfort under different angles and backrest tilt angles and can provide reference and research value for related industries. The results show that the optimized nonlinear prediction model of IPSO-SVR has higher accuracy, and its prediction method is feasible and generalizable, meaning it can provide a reliable basis for the prediction of seat comfort under different angles and backrest inclinations, as well as providing reference and research value for related industries.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. The role of lumbar support on lumbar muscles during simulated pilot sitting;Xiong;Occup. Health,2019

2. A model-based approach for the analysis of aircraft seating comfort;Vanacore;Work,2020

3. Simulation of pilot seat cushion comfort based on Ansys;Li;J. Beijing Univ. Aeronaut. Astronaut.,2015

4. Effect of inclination angles of supporting surfaces og aircraft seat on pilot’s working capacity in long-duration flight;Lapa;Aerosp. Environ. Med.,2000

5. Sedentary Behavior and Physical Activity Levels in People with Schizophrenia, Bipolar Disorder and Major Depressive Disorder: A Global Systematic Review and Meta-Analysis;Vancampfort;World Psychiatry,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3