VLSI-Friendly Filtering Algorithms for Deep Neural Networks

Author:

Cariow Aleksandr1ORCID,Papliński Janusz P.1ORCID,Makowska Marta1

Affiliation:

1. Faculty of Computer Science and Information Technology, West Pomeranian University of Technology in Szczecin, Żołnierska 49, 71-210 Szczecin, Poland

Abstract

The paper introduces a range of efficient algorithmic solutions for implementing the fundamental filtering operation in convolutional layers of convolutional neural networks on fully parallel hardware. Specifically, these operations involve computing M inner products between neighbouring vectors generated by a sliding time window from the input data stream and an M-tap finite impulse response filter. By leveraging the factorisation of the Hankel matrix, we have successfully reduced the multiplicative complexity of the matrix-vector product calculation. This approach has been applied to develop fully parallel and resource-efficient algorithms for M values of 3, 5, 7, and 9. The fully parallel hardware implementation of our proposed algorithms achieves approximately a 30% reduction in embedded multipliers compared to the naive calculation methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. ImageNet classification with deep convolutional neural networks;Krizhevsky;Commun. ACM,2017

2. Deep learning;LeCun;Nature,2015

3. Building cellular neural network templates with a hardware friendly learning algorithm;Adhikari;Neurocomputing,2018

4. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions;Alzubaidi;J. Big Data,2021

5. Optimization and acceleration of convolutional neural networks: A survey;Habib;J. King Saud-Univ.-Comput. Inf. Sci.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3