Software Product Line Maintenance Using Multi-Objective Optimization Techniques

Author:

Jamil Muhammad Abid1ORCID,Nour Mohamed K.1,Alotaibi Saud S.2ORCID,Hussain Mohammad Jabed2ORCID,Hussaini Syed Mutiullah1,Naseer Atif3ORCID

Affiliation:

1. Department of Computer Science, College of Computers and Information Systems, Umm Al Qura University, Makkah 21955, Saudi Arabia

2. Department of Information Systems, College of Computers and Information Systems, Umm Al Qura University, Makkah 21955, Saudi Arabia

3. Science and Technology Unit, Umm Al Qura University, Makkah 21955, Saudi Arabia

Abstract

Currently, software development is more associated with families of configurable software than the single implementation of a product. Due to the numerous possible combinations in a software product line, testing these families of software product lines (SPLs) is a difficult undertaking. Moreover, the presence of optional features makes the testing of SPLs impractical. Several features are presented in SPLs, but due to the environment’s time and financial constraints, these features are rendered unfeasible. Thus, testing subsets of configured products is one approach to solving this issue. To reduce the testing effort and obtain better results, alternative methods for testing SPLs are required, such as the combinatorial interaction testing (CIT) technique. Unfortunately, the CIT method produces unscalable solutions for large SPLs with excessive constraints. The CIT method costs more because of feature combinations. The optimization of the various conflicting testing objectives, such as reducing the cost and configuration number, should also be considered. In this article, we proposed a search-based software engineering solution using multi-objective evolutionary algorithms (MOEAs). In particular, the research was applied to different types of MOEA method: the Indicator-Based Evolutionary Algorithm (IBEA), Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D), Non-dominant Sorting Genetic Algorithm II (NSGAII), NSGAIII, and Strength Pareto Evolutionary Algorithm 2 (SPEA2). The results of the algorithms were examined in the context of distinct objectives and two quality indicators. The results revealed how the feature model attributes, implementation context, and number of objectives affected the performances of the algorithms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3