Sentinel-2 Observation of Water Color Variations in Inland Water across Guangzhou and Shenzhen after the Establishment of the Guangdong-Hong Kong-Macao Bay Area

Author:

Zhao Yelong12ORCID,Chen Jinsong12ORCID,Li Xiaoli12ORCID

Affiliation:

1. Center for Geo-Spatial Information, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

2. Shenzhen Engineering Laboratory of Ocean Environmental Big Data Analysis and Application, Shenzhen 518055, China

Abstract

Guangzhou and Shenzhen are two core cities in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). It is increasingly important to regulate water quality in urban development. The Forel–Ule Index (FUI) can be obtained by optical data and is an important indicator. Therefore, we used Sentinel-2 to calculate the FUI of 41 lakes and reservoirs in Guangzhou and Shenzhen from January to December in 2016–2021, and analyzed their spatio-temporal variations, including spatial distributions, seasonal variations, and inter-annual variations. We also performed a correlation analysis of driving factors. In Guangzhou, the FUI was low in the north and west, and high in the south and east. In Shenzhen, the FUI was high in the west and low in the east. Moreover, 68% of the lakes and reservoirs in Guangzhou exhibited seasonal variations, with a low FUI in summer and autumn, and high levels in spring and winter. Shenzhen had the lowest FUI in autumn. Furthermore, 36% of the lakes and reservoirs in Guangzhou exhibited increasing inter-annual variations, whereas Shenzhen exhibited stable and decreasing inter-annual variations. Among the 41 lakes and reservoirs analyzed herein, the FUI of 10 water areas were positively correlated with precipitation, while the FUI of 31 water areas were negatively correlated with precipitation. Increased precipitation leads to an increase in external pollutants and sediment, as well as the resuspension of substances in the water, resulting in more turbid water. Therefore, an increase in precipitation is positively correlated with the FUI, whereas a decrease in precipitation is negatively correlated with the FUI. These findings can be used to design suitable management policies to maintain and control the local water quality.

Funder

National Key Research and Development Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Fundamental Research Foundation of Shenzhen Science and Technology Program

Fundamental Research Foundation of Shenzhen Technology and Innovation Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3