Modified Extended Complex Kalman Filter for DC Offset and Distortion Rejection in Grid-Tie Transformerless Converters

Author:

El-Nagar Mohammed1ORCID,Ahmed Khaled2ORCID,Hamdan Eman3,Abdel-Khalik Ayman S.1,Hamad Mostafa S.4,Ahmed Shehab5

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

2. Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK

3. Marine Engineering Technology Department, Arab Academy for Science, Technology and Maritime Transport, Alexandria 21913, Egypt

4. Electrical and Control Engineering Department, Arab Academy for Science, Technology and Maritime Transport, Alexandria 21913, Egypt

5. CEMSE Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

Abstract

Proper operation of the grid-tie transformerless converters under unbalanced and distorted conditions entails a precise detection of the frequency and fundamental component of the grid voltage. One of the main problems that could arise during the estimation of grid parameters is the existence of a DC offset generated from measurement and A/D conversion. This undesirable induced DC offset could appear as a part of the reference sinusoidal current of grid-tie converters. Although literature has proposed the use of an extended complex Kalman filter (ECKF) for the estimation of positive and negative sequence voltage components as a promising competitor to phase locked loops, mitigating the effect of possible DC offsets when a Kalman filter is employed remains scarce. This paper proposes a new extended complex Kalman filter to improve the filter stability for estimating the frequency and the fundamental positive and negative symmetrical components of the grid voltages, where DC offset, scaling error, and noise can successfully be rejected. The theoretical findings are experimentally validated.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3