Network Anomaly Intrusion Detection Based on Deep Learning Approach

Author:

Wang Yung-Chung1,Houng Yi-Chun1,Chen Han-Xuan1,Tseng Shu-Ming2ORCID

Affiliation:

1. Department of Electrical Engineering, National Taipei University of Technology, Taipei 106, Taiwan

2. Department of Electronic Engineering, National Taipei University of Technology, Taipei 106, Taiwan

Abstract

The prevalence of internet usage leads to diverse internet traffic, which may contain information about various types of internet attacks. In recent years, many researchers have applied deep learning technology to intrusion detection systems and obtained fairly strong recognition results. However, most experiments have used old datasets, so they could not reflect the latest attack information. In this paper, a current state of the CSE-CIC-IDS2018 dataset and standard evaluation metrics has been employed to evaluate the proposed mechanism. After preprocessing the dataset, six models—deep neural network (DNN), convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM), CNN + RNN and CNN + LSTM—were constructed to judge whether network traffic comprised a malicious attack. In addition, multi-classification experiments were conducted to sort traffic into benign traffic and six categories of malicious attacks: BruteForce, Denial-of-service (DoS), Web Attacks, Infiltration, Botnet, and Distributed denial-of-service (DDoS). Each model showed a high accuracy in various experiments, and their multi-class classification accuracy were above 98%. Compared with the intrusion detection system (IDS) of other papers, the proposed model effectively improves the detection performance. Moreover, the inference time for the combinations of CNN + RNN and CNN + LSTM is longer than that of the individual DNN, RNN and CNN. Therefore, the DNN, RNN and CNN are better than CNN + RNN and CNN + LSTM for considering the implementation of the algorithm in the IDS device.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. (2022, April 10). Acronis Cyberthreats Report 2022: 20 Billion USD in Damage from Ransomware and other Cyber Attacks. Available online: https://www.acronis.com/en-eu/pr/2021/12/09-13-43.html.

2. (2022, April 11). FBI Statement on Incident Involving Fake Emails, Available online: https://www.fbi.gov/news/pressrel/press-releases/fbi-statement-on-incident-involving-fake-emails.

3. Review on the Application of Deep Learning in Network Attack Detection;Yi;J. Netw. Comput. Appl.,2023

4. A Comprehensive Survey on Deep Learning based Malware Detection Techniques;Gopinath;Comput. Sci. Rev.,2023

5. Deep Learning for Cyber Security Intrusion Detection: Approaches Datasets and Comparative Study;Ferrag;J. Inf. Secur. Appl.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3