High-Quality 3D Visualization System for Light-Field Microscopy with Fine-Scale Shape Measurement through Accurate 3D Surface Data

Author:

Kwon Ki Hoon1ORCID,Erdenebat Munkh-Uchral2ORCID,Kim Nam2ORCID,Khuderchuluun Anar2,Imtiaz Shariar Md2ORCID,Kim Min Young1ORCID,Kwon Ki-Chul2ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

2. School of Information and Communication Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea

Abstract

We propose a light-field microscopy display system that provides improved image quality and realistic three-dimensional (3D) measurement information. Our approach acquires both high-resolution two-dimensional (2D) and light-field images of the specimen sequentially. We put forward a matting Laplacian-based depth estimation algorithm to obtain nearly realistic 3D surface data, allowing the calculation of depth data, which is relatively close to the actual surface, and measurement information from the light-field images of specimens. High-reliability area data of the focus measure map and spatial affinity information of the matting Laplacian are used to estimate nearly realistic depths. This process represents a reference value for the light-field microscopy depth range that was not previously available. A 3D model is regenerated by combining the depth data and the high-resolution 2D image. The element image array is rendered through a simplified direction-reversal calculation method, which depends on user interaction from the 3D model and is displayed on the 3D display device. We confirm that the proposed system increases the accuracy of depth estimation and measurement and improves the quality of visualization and 3D display images.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3