Abstract
Myofibrillar myopathies (MFM) are heterogeneous hereditary muscle diseases with characteristic myopathological features of Z-disk dissolution and aggregates of its degradation products. The onset and progression of the disease are variable, with an elusive genetic background, and around half of the cases lacking molecular diagnosis. Here, we attempted to establish possible genetic foundations of MFM by performing whole exome sequencing (WES) in eleven unrelated families of 13 patients clinically diagnosed as MFM spectrum. A filtering strategy aimed at identification of variants related to the disease was used and included integrative analysis of WES data and human phenotype ontology (HPO) terms, analysis of muscle-expressed genes, and analysis of the disease-associated interactome. Genetic diagnosis was possible in eight out of eleven cases. Putative causative mutations were found in the DES (two cases), CRYAB, TPM3, and SELENON (four cases) genes, the latter typically presenting with a rigid spine syndrome. Moreover, a variety of additional, possibly phenotype-affecting variants were found. These findings indicate a markedly heterogeneous genetic background of MFM and show the usefulness of next generation sequencing in the identification of disease-associated mutations. Finally, we discuss the emerging concept of variant load as the basis of phenotypic heterogeneity.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献