Abstract
Discretized image signals might have a lower dynamic range than the display. Because of this, false contours might appear when the image has the same pixel value for a larger region and the distance between pixel levels reaches the noticeable difference threshold. There have been several methods aimed at approximating the high bit depth of the original signal. Our method models a region with a bended plate model, which leads to the biharmonic equation. This method addresses several new aspects: the reconstruction of non-continuous regions when foreground objects split the area into separate regions; the incorporation of confidence about pixel levels, making the model tunable; and the method gives a physics-inspired way to handle local maximal/minimal regions. The solution of the biharmonic equation yields a smooth high-order signal approximation and handles the local maxima/minima problems.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science