Energy Minimization in Piperazine Promoted MDEA-Based CO2 Capture Process

Author:

Khan Bilal Alam,Ullah Asad,Saleem Muhammad WajidORCID,Khan Abdullah Nawaz,Faiq Muhammad,Haris Mir

Abstract

A piperazine (PZ)-promoted methyldiethanolamine (MDEA) solution for a carbon dioxide (CO2) removal process from the flue gas of a large-scale coal power plant has been simulated. An Aspen Plus® was used to perform the simulation process. Initially, the effects of MDEA/PZ concentration ratio and stripper pressure on the regeneration energy of CO2 capture process were investigated. The MDEA/PZ concentration ratio of 35/15 wt.% (35 wt. MDEA and 15 wt.% PZ) was selected as an appropriate concentration. The reboiler duty of 3.235 MJ/kg CO2 was obtained at 35/15 wt.% concentration ratio of MDEA/PZ. It was considered a reference or base case, and process modifications including rich vapor compression (RVC) process, cold solvent split (CSS), and the combination of both processes were investigated to check its effect on the energy requirement. A total equivalent work of 0.7 MJe/kg CO2 in the RVC and a reboiler duty of 2.78 MJ/kg CO2 was achieved in the CSS process. Similarly, the total equivalent work, reboiler duty, and condenser duty of 0.627 MJe/kg CO2, 2.44 MJ/kg CO2, and 0.33 MJ/kg CO2, respectively, were obtained in the combined process. The reboiler duty and the total equivalent work were reduced by about 24.6 and 16.2%, respectively, as compared to the reference case. The total energy cost saving was 1.79 M$/yr. Considering the additional equipment cost in the combined process, the total cost saving was 0.67 M$ per year.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3