The Formation of Perovskite during the Combustion of an Energy-Rich Glycine–Nitrate Precursor

Author:

Komova Oksana,Mukha Svetlana,Ozerova AnnaORCID,Odegova Galina,Simagina Valentina,Bulavchenko Olga,Ishchenko Arcady,Netskina OlgaORCID

Abstract

The effect of different regimes of combustion of glycine–nitrate precursors on the formation of perovskite phases (LaMnO3 and LaCrO3) without additional heat treatment was studied. The following three combustion regimes were compared: the traditional solution combustion synthesis (SCS), volume combustion synthesis (VCS) using a powdered precursor, and self-propagating high-temperature synthesis (SHS) using a precursor pellet. The products of combustion were studied using a series of physicochemical methods (attenuated total reflection infrared spectroscopy (ATR FTIR), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and thermal analysis). SHS was found to be the most productive regime for the formation of perovskite because of its ability to develop high temperatures in the reaction zone, which led to a reduced content of the thermally stable lanthanum carbonate impurities and to an increased yield and crystallite size of the perovskite phase. The reasons for the better crystallinity and purity of LaCrO3 as compared with LaMnO3 is also discussed, namely the low temperatures of the onset of the thermolysis, the fast rate of combustion, and the favorable thermodynamics for the achievement of high temperatures in the reaction zone.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3