Low-Carbon Development from the Energy–Water Nexus Perspective in China’s Resource-Based City

Author:

Zhao Yi,Lin GangORCID,Jiang DongORCID,Fu JingyingORCID,Li Xiang

Abstract

Energy crises, water shortages, and rising carbon emissions are constantly posing new demands and challenges to global economic development. Considering the problem of high emissions and high water consumption in the process of energy production and transformation in resource-based cities, this study established the LEAP-Jincheng model based on the low emissions analysis platform (LEAP) model. Taking 2020 as the base year, the baseline scenario (BS), policy scenario (PS), and intensified scenario (IS) were set to predict future energy and water consumption and carbon emissions of Jincheng from 2021 to 2050. The results show that both PS and IS can achieve energy conservation and emission reduction to some extent. The total energy consumption of PS will be 32.89 million metric tons of coal equivalent in 2050, 15.62% less than the BS. However, the carbon emissions in 2030 will reach 8221 metric tons CO2 equivalent, which is significantly higher than that in other scenarios. In PS, carbon emissions after 2030 will not be significantly reduced, and the energy–water elasticity coefficient is −0.77, which fails to achieve effective emission reduction under energy–water synergy. The total energy consumption of the IS will be 22.57 million metric tons of coal equities in 2050, which has a total decrease of 31.38%, compared to BS. In the IS, the carbon emissions will reach a peak in 2030 (68.77 million metric tons CO2 equivalent) and subsequently reduce to 50.72 million metric tons CO2 equivalent in 2050, which has a total decrease of 50.64%, compared to BS. Furthermore, water consumption and energy–water synergy results show that the elastic coefficient is 1.37 in the IS. The IS is the best scenario for Jincheng to achieve coordinated development of energy and water resources from a low-carbon perspective. This study can provide a scientific basis for decision-making departments of Jincheng to formulate targeted sustainable development policies for energy and water and has an essential promoting significance for China to achieve the “double carbon” goals.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Youth Innovation Promotion Association

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3