Research of Exhaust Gas Boiler Heat Exchange Surfaces with Reduced Corrosion When Water-Fuel Emulsion Combustion

Author:

Yang ZongmingORCID,Kornienko VictoriaORCID,Radchenko MykolaORCID,Radchenko Andrii,Radchenko Roman

Abstract

The application of water-fuel emulsion (WFE) in internal combustion engines enables to reduce the consumption of sulfurous fuel oils, thereby protecting the environment from emissions of sulfur and nitrogen oxides, as well revealing a great potential for the heat utilization of exhaust gases. The efficiency of utilization of exhaust gas heat in exhaust boilers (EGB) depends on their temperature at the outlet of EGB, id est. the depth of heat utilization. Exhaust gas temperature is limited by the rate of low-temperature corrosion (LTC), which reaches a level of 1.2 mm/year at the wall temperature of about 110 °C for the condensing heat exchange surfaces (HES) and reduces the reliability of the HES operation. Therefore, decreasing the corrosion rate of condensing HES at wall temperature below 110 °C to an acceptable level (about 0.2 mm/year) when undergoing WFE combustion will make it possible to reduce the exhaust gas temperature and, consequently, increase the efficiency of EGB and fuel saving during the operation of the ship power plant. The aim of the research is to assess improvements to the reliability, durability and efficient operation of condensing HES in marine EGB undergoing WFE combustion in a diesel engine based on experimental studies of the LTC process. A special experimental setup was developed for investigation. The use of WFE with a decreased wall temperature of HES below 80 to 70 °C would improve the reliability of the EGB along the accepted service life, increase the lifetime of the HES metal by almost six times as well as the overhaul period, and reduce the cost of repairing condensing HES. Furthermore, due to the reducing corrosion rate under WFE combustion, the application of low-temperature condensing HES makes it possible to enhance the efficiency of deeper exhaust gas heat utilization and provide sustainable efficient operation of a diesel engine plant on the whole at a safe thermal and environmentally friendly level.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3