The Modeling and Simplification of a Thermal Model of a Planar Transformer Based on Internal Power Loss

Author:

Shen Zhan,Xu Bingxin,Liu Chenglei,Hu CungangORCID,Liu Bi,Xu ZhikeORCID,Jin Long,Chen Wu

Abstract

With the development of high-performance wide-band-gap devices and increasing converter frequency, planar transformers are widely used in high-frequency and high-power-density power conversions. Due to the skin effect and proximity effect, accurate thermal analysis and a simplified thermal model of planar transformers are needed for quick thermal verification as well as system design. This paper proposes two thermal simplification models based on the planar transformer’s thermal impedance network. The internal power loss and thermal coupling between each component are first analyzed. Then, based on thermal radiation theory, the simplified thermal model of the planar transformer is presented. It only requires the input of the total power loss of the planar transformer to calculate the temperature rise, and it does not need the power loss of each component. Finally, the simulation and experimental verification are carried out on a MHz prototype.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3