A Trusted Security Key Management Server in LoRaWAN: Modelling and Analysis

Author:

Ntshabele Koketso,Isong BasseyORCID,Gasela Naison,Abu-Mahfouz Adnan M.ORCID

Abstract

The traditional Long-Range Wide-Area Network (LoRaWAN) uses an Advanced Encryption Standard (AES) 128 bit symmetric key to secure entities and data against several attacks. However, due to the existence of heterogeneous applications, designing a globally accepted and resilient LoRaWAN security model is challenging. Although several security models to maximize the security efficiency in LoRaWAN exist using the trusted key server to securely manage the keys, designing an optimum LoRaWAN security model is yet to be fully realized. Therefore, in this paper, we proposed two LoRaWAN security algorithms, A and B, for a trusted key management server (TKMS) to securely manage and distribute the keys amongst the entities. Algorithm B is an enhanced version of Algorithm A, which utilizes the security shortcomings of Algorithm A. We employed two formal analysis methods in the modelling, results analysis, and verification. The Scyther security verification tool was used for algorithm modelling and analysis against all possible attacks, while BAN logic was used to prove the logical correctness of the proposed algorithms. The results indicate that BAN logic feasibly proves the model logic correctness and the security claims employed in Scyther are reliable metrics for assessing the algorithms’ security efficiency. The security claims proved that the security algorithm is more secure and reliable as no attacks were detected across all entities in the enhanced-Algorithm B, unlike in Algorithm A. Moreover, the application of hashing minimizes computation cost and time for authentication and message integrity as compared to symmetric and asymmetric encryption. However, the proposed algorithm is yet to be verified as completely lightweight.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Reference26 articles.

1. An Improved LEA Block Encryption Algorithm to Prevent Side-Channel Attack in the IoT System;Choi;Proceedings of the 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA),2016

2. An Enhanced Key Management Scheme for LoRaWAN

3. Layered Network Protocols for Secure Communications in the Internet of Things;Hu,2021

4. A Dual Key-Based Activation Scheme for Secure LoRaWAN

5. A Polynomial Subset-Based Efficient Multi-Party Key Management System for Lightweight Device Networks

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3