A Trust-Influenced Smart Grid: A Survey and a Proposal

Author:

Boakye-Boateng KwasiORCID,Ghorbani Ali A.ORCID,Lashkari Arash HabibiORCID

Abstract

A compromised Smart Grid, or its components, can have cascading effects that can affect lives. This has led to numerous cybersecurity-centric studies focusing on the Smart Grid in research areas such as encryption, intrusion detection and prevention, privacy and trust. Even though trust is an essential component of cybersecurity research; it has not received considerable attention compared to the other areas within the context of Smart Grid. As of the time of this study, we observed that there has neither been a study assessing trust within the Smart Grid nor were there trust models that could detect malicious attacks within the substation. With these two gaps as our objectives, we began by presenting a mathematical formalization of trust within the context of Smart Grid devices. We then categorized the existing trust-based literature within the Smart Grid under the NIST conceptual domains and priority areas, multi-agent systems and the derived trust formalization. We then proposed a novel substation-based trust model and implemented a Modbus variation to detect final-phase attacks. The variation was tested against two publicly available Modbus datasets (EPM and ATENA H2020) under three kinds of tests, namely external, internal, and internal with IP-MAC blocking. The first test assumes that external substation adversaries remain so and the second test assumes all adversaries within the substation. The third test assumes the second test but blacklists any device that sends malicious requests. The tests were performed from a Modbus server’s point of view and a Modbus client’s point of view. Aside from detecting the attacks within the dataset, our model also revealed the behaviour of the attack datasets and their influence on the trust model components. Being able to detect all labelled attacks in one of the datasets also increased our confidence in the model in the detection of attacks in the other dataset. We also believe that variations of the model can be created for other OT-based protocols as well as extended to other critical infrastructures.

Funder

Atlantic Canada Opportunities Agency

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3