Abstract
The paper describes a new adaptive approach to the investigation of acoustic emission of rocks, the anomalies of which may serve as short-term precursors of strong earthquakes. The basis of the approach is complex methods for monitoring acoustic emission and for analysis of its time-frequency content. Piezoceramic hydrophones and vector receivers, installed at the bottom of natural and artificial water bodies, as well as in boreholes with water, are used as acoustic emission sensors. To perform a time-frequency analysis of geoacoustic signals, we use a sparse approximation based on the developed Adaptive Matching Pursuit algorithm. The application of this algorithm in the analysis makes it possible to adapt to the concrete characteristics of each geoacoustic pulse. Results of the application of the developed approach for the investigation of acoustic emission anomalies, occurring before earthquakes, are presented. We analyzed the earthquakes, that occurred from 2011 to 2016 in the seismically active region of the Kamchatka peninsula, which is a part of the circum-Pacific orogenic belt also known as the “Ring of Fire”. It was discovered that geoacoustic pulse frequency content changes before a seismic event and returns to the initial state after an earthquake. That allows us to make a conclusion on the transformation of acoustic emission source scales before earthquakes. The obtained results may be useful for the development of the systems for environmental monitoring and detection of earthquake occurrences.
Funder
Russian Federation State Assignment
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference28 articles.
1. Geoakusticheskij predvestnik Spitakskogo zemletryaseniya;Morgunov;Vulcanol. Seismol.,1991
2. “Storms of crustal stress” and AE earthquake precursors;Gregori;Nat. Hazards Earth Syst. Sci.,2010
3. Toader, E., Moldovan, I.A., and Mihai, A. (July, January 30). Forecast earthquakes using acoustic emission. Proceedings of 19th International Multidisciplinary Scientific GeoConference (SGEM 2019), Albena, Bulgaria.
4. Variations in the geoacoustic emission pattern related to earthquakes on Kamchatka;Kuptsov;Izv. Phys. Solid Earth.,2005
5. High-frequency acoustic emission effect;Marapulets;Bull. Krasec. Phys. Math. Sci.,2015
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献