Feasibility of a Real-Time Embedded Hyperspectral Compressive Sensing Imaging System

Author:

Lim Olivier,Mancini Stéphane,Dalla Mura MauroORCID

Abstract

Hyperspectral imaging has been attracting considerable interest as it provides spectrally rich acquisitions useful in several applications, such as remote sensing, agriculture, astronomy, geology and medicine. Hyperspectral devices based on compressive acquisitions have appeared recently as an alternative to conventional hyperspectral imaging systems and allow for data-sampling with fewer acquisitions than classical imaging techniques, even under the Nyquist rate. However, compressive hyperspectral imaging requires a reconstruction algorithm in order to recover all the data from the raw compressed acquisition. The reconstruction process is one of the limiting factors for the spread of these devices, as it is generally time-consuming and comes with a high computational burden. Algorithmic and material acceleration with embedded and parallel architectures (e.g., GPUs and FPGAs) can considerably speed up image reconstruction, making hyperspectral compressive systems suitable for real-time applications. This paper provides an in-depth analysis of the required performance in terms of computing power, data memory and bandwidth considering a compressive hyperspectral imaging system and a state-of-the-art reconstruction algorithm as an example. The results of the analysis show that real-time application is possible by combining several approaches, namely, exploitation of system matrix sparsity and bandwidth reduction by appropriately tuning data value encoding.

Funder

ANR FuMultiSPOC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potential of an Embedded Hyperspectral Compressive Imaging System for Remote Sensing Applications;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3