Firefly Algorithm-Based Photovoltaic Array Reconfiguration for Maximum Power Extraction during Mismatch Conditions

Author:

Nazeri Mohammad Nor Rafiq,Tajuddin Mohammad Faridun NaimORCID,Babu Thanikanti SudhakarORCID,Azmi AzralmukminORCID,Malvoni MariaORCID,Kumar Nallapaneni ManojORCID

Abstract

This studyaimed at improving the performance and efficiency of conventional static photovoltaic (PV) systems by introducing a metaheuristic algorithm-based approach that involves reconfiguring electrical wiring using switches under different shading profiles. Themetaheuristicalgorithmused wasthe firefly algorithm (FA), which controls the switching patterns under non-homogenous shading profiles and tracks the highest global peak of power produced by the numerous switching patterns. This study aimed to solve the current problems faced by static PV systems, such as unequal dispersion of shading affecting solar panels, multiple peaks, and hot spot phenomena, which can contribute to significant power loss and efficiency reduction. The experimental setup focusedon software development and the system or model developed in the MATLAB Simulink platform. Athorough and comprehensive analysis was done by comparing the proposed method’s overall performance and power generation with thenovel static PVseries–parallel (SP) topology and totalcross-tied (TCT) scheme. The SP configuration is widely used in the PV industry. However, the TCT configuration has superior performance and energy yield generation compared to other static PV configurations, such as the bridge-linked (BL) and honey comb (HC) configurations. The results presented in this paper provide valuable information about the proposed method’s features with regard toenhancing the overall performance and efficiency of PV arrays.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3