Target Detection-Based Tree Recognition in a Spruce Forest Area with a High Tree Density—Implications for Estimating Tree Numbers

Author:

Emin MirzatORCID,Anwar Erpan,Liu Suhong,Emin Bilal,Mamut Maryam,Abdukeram Abduwali,Liu Ting

Abstract

Here, unmanned aerial vehicle (UAV) remote sensing and machine vision were used to automatically, accurately, and efficiently count Tianshan spruce and improve the efficiency of scientific forest management, focusing on a typical Tianshan spruce forest on Tianshan Mountain, middle Asia. First, the UAV in the sampling area was cropped from the image, and a target-labeling tool was used. The Tianshan spruce trees were annotated to construct a data set, and four models were used to identify and verify them in three different areas (low, medium, and high canopy closures). Finally, the combined number of trees was calculated. The average accuracy of the detection frame, mean accuracy and precision (mAP), was used to determine the target detection accuracy. The Faster Region Convolutional Neural Network (Faster-RCNN) model achieved the highest accuracies (96.36%, 96.32%, and 95.54% under low, medium, and high canopy closures, respectively) and the highest mAP (85%). Canopy closure affected the detection and recognition accuracy; YOLOv3, YOLOv4, and Faster-RCNN all showed varying spruce recognition accuracies at different densities. The accuracy of the Faster-RCNN model decreased by at least 0.82%. Combining UAV remote sensing with target detection networks can identify and quantify statistics regarding Tianshan spruce. This solves the shortcomings of traditional monitoring methods and is significant for understanding and monitoring forest ecosystems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3