Abstract
Grading is a decisive step in the successful distribution of mangoes to customers according to their preferences for the maturity index. A non-destructive method using near-infrared spectroscopy has historically been used to predict the maturity of fruit. This research classifies the maturity indexes in five classes using a new approach involving classification modeling and the application of fuzzy logic and indirect classification by measuring four parameters: total acidity, soluble solids content, firmness, and starch. These four quantitative parameters provide guidelines for maturity indexes and consumer preferences. The development of portable devices uses a neo spectra micro development kit with specifications for the spectrum of 1350–2500 nm. In terms of computer technology, this study uses a Raspberry Pi and Python programming. To improve the accuracy performance, preprocessing is carried out using 12 spectral transformation operators. Next, these operators are collected and combined to achieve optimal performance. The performance of the classification model with direct and indirect approaches is then compared. Ultimately, classification of the direct approach with preprocessing using linear discriminant analysis offered an accuracy of 91.43%, and classification of the indirect approach using partial least squares with fuzzy logic had an accuracy of 95.7%.
Funder
Education Fund Management Institute, Ministry of Finance of the Republic of Indonesia
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献