Abstract
Data centers are crucial to the growth of cloud computing. Next-generation data center networks (DCNs) will rely heavily on optical technology. Here, we have investigated a bidirectional wavelength-division-multiplexed (WDM) free space optical communication (FSO) system for deployment in optical wireless DCNs. The system was evaluated for symmetric 10 Gbps 16—quadrature amplitude modulation (16-QAM) intensity-modulated orthogonal frequency-division multiplexing (OFDM) downstream signals and 10 Gbps on-off keying (OOK) upstream signals, respectively. The transmission of optical signals over an FSO link is demonstrated using a gamma–gamma channel model. According to the bit error rate (BER) results obtained for each WDM signal, the bidirectional WDM-FSO transmission could achieve 320 Gbps over 1000 m free space transmission length. The results show that the proposed FSO topology offers an excellent alternative to fiber-based optical interconnects in DCNs, allowing for high data rate bidirectional transmission.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献