Kappa Distributions and Isotropic Turbulence

Author:

Gravanis EliasORCID,Akylas Evangelos,Panagiotou Constantinos,Livadiotis George

Abstract

In this work, the two-point probability density function (PDF) for the velocity field of isotropic turbulence is modeled using the kappa distribution and the concept of superstatistics. The PDF consists of a symmetric and an anti-symmetric part, whose symmetry properties follow from the reflection symmetry of isotropic turbulence, and the associated non-trivial conditions are established. The symmetric part is modeled by the kappa distribution. The anti-symmetric part, constructed in the context of superstatistics, is a novel function whose simplest form (called “the minimal model”) is solely dictated by the symmetry conditions. We obtain that the ensemble of eddies of size up to a given length r has a temperature parameter given by the second order structure function and a kappa-index related to the second and the third order structure functions. The latter relationship depends on the inverse temperature parameter (gamma) distribution of the superstatistics and it is not specific to the minimal model. Comparison with data from direct numerical simulations (DNS) of turbulence shows that our model is applicable within the dissipation subrange of scales. Also, the derived PDF of the velocity gradient shows excellent agreement with the DNS in six orders of magnitude. Future developments, in the context of superstatistics, are also discussed.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blackbody radiation, kappa distribution and superstatistics;Physica A: Statistical Mechanics and its Applications;2021-09

2. Superstatistics and isotropic turbulence;Physica A: Statistical Mechanics and its Applications;2021-04

3. Bivariate superstatistics: an application to statistical plasma physics;The European Physical Journal B;2021-02

4. Estimation of Turbulent Heating of Solar Wind Protons at 1 au;The Astrophysical Journal;2020-12-01

5. Physical meaning of temperature in superstatistics;EPL (Europhysics Letters);2020-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3