Load-Balancing Strategies in Discrete Element Method Simulations

Author:

Golshan ShahabORCID,Blais BrunoORCID

Abstract

In this research, we investigate the influence of a load-balancing strategy and parametrization on the speed-up of discrete element method simulations using Lethe-DEM. Lethe-DEM is an open-source DEM code which uses a cell-based load-balancing strategy. We compare the computational performance of different cell-weighing strategies based on the number of particles per cell (linear and quadratic). We observe two minimums for particle to cell weights (at 3, 40 for quadratic, and 15, 50 for linear) in both linear and quadratic strategies. The first and second minimums are attributed to the suitable distribution of cell-based and particle-based functions, respectively. We use four benchmark simulations (packing, rotating drum, silo, and V blender) to investigate the computational performances of different load-balancing schemes (namely, single-step, frequent and dynamic). These benchmarks are chosen to demonstrate different scenarios that may occur in a DEM simulation. In a large-scale rotating drum simulation, which shows the systems in which particles occupy a constant region after reaching steady-state, single-step load-balancing shows the best performance. In a silo and V blender, where particles move in one direction or have a reciprocating motion, frequent and dynamic schemes are preferred. We propose an automatic load-balancing scheme (dynamic) that finds the best load-balancing steps according to the imbalance of computational load between the processes. Furthermore, we show the high computational performance of Lethe-DEM in the simulation of the packing of 108 particles on 4800 processes. We show that simulations with optimum load-balancing need ≈40% less time compared to the simulations with no load-balancing.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow;Geoscientific Model Development;2024-05-21

2. Numerical Modelling and Imaging of Industrial-Scale Particulate Systems: A Review of Contemporary Challenges and Solutions;KONA Powder and Particle Journal;2024

3. Anti-skid durability of porous drainage asphalt mixture based on discrete element;Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction;2023-07-24

4. A high‐order stabilized solver for the volume averaged Navier‐Stokes equations;International Journal for Numerical Methods in Fluids;2023-02-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3