Chemical Recycling of Mixed Plastics in Electronic Waste Using Solvent-Based Processing

Author:

Anderson Lester,Yu EvanORCID,Chen Wan-TingORCID

Abstract

Currently, less than 20% of electronic waste (E-waste) produced in the U.S. is recycled. To improve the recycling rate of E-waste, the study aimed to: (1) identify the major plastics found within electronic shredder residue (ESR), (2) design solvents and processing conditions capable of separating out 90% of the plastic in ESR, and (3) estimate the energy efficiency of the solvent-based process developed. Preliminary screening showed 25 wt.% of the ESR was composed of plastics, with two polymers dominating the sorted plastic fraction—polystyrene (PS, 40 wt.%) and acrylonitrile butadiene styrene (ABS, 25 wt.%). Subsequently, solvents and anti-solvents were screened using Hansen Solubility Parameter Theory for PS, ABS, and ESR dissolution. The pre-screening results showed dichloromethane (DCM) and tetrahydrofuran (THF) as the most effective solvents for PS and ABS, with methanol (MeOH) and ethylene glycol (EG) as the most effective anti-solvents. By optimizing the dissolution time and the solvents used, the highest polymer dissolution yield (99 wt.%) was achieved using DCM for 48 h. Both MeOH and EG precipitated 71 wt.% of the polymer fraction of ESR. EG removed more phosphorus containing flame retardants (94 wt.%) than MeOH (69 wt.%). Energy analysis indicated that the solvent-based processes could save 25–60% of the embodied energy for PS and ABS. Characterization showed that the solvent-based processing could preserve the high molecular weight fraction of the polymers while removing flame retardants at the same time. The results from this study prove the potential of solvent-based processing to produce secondary plastic materials from E-waste for cross-industry reuse.

Funder

United States Department of Energy

University of Massachusetts Lowell

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3