Performance of Ni-Based Catalysts with La Promoter for the Reforming of Methane in Gasification Process

Author:

Chen Meng1ORCID,Wang Lei1

Affiliation:

1. School of Environmental Science and Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China

Abstract

The deactivation of active sites caused by high-temperature sintering and the deposition of a large amount of carbon are the main difficulties in the reforming of methane using Ni-based catalysts. La, as a promoter, has an ameliorating effect on the defects of Ni-based catalysts. In this article, the mechanism of action of Ni-based catalysts with the introduction of the rare-earth metal additive La was reviewed, and the effects of La on the methane-reforming performance of Ni-based catalysts were examined. The physical properties, alkalinity, and activity of Ni-based catalysts can be enhanced by the use of the auxiliary agent La, which promotes the conversion of CH4 and CO2 as well as the selectivity towards H2 and CO formation in the reforming of methane. The reason why the Ni-based catalysts could maintain long-term stability in the presence of La was discussed. Furthermore, the current state of research on the introduction of different amounts of La in the reforming of methane at home and abroad was analyzed. It was found that 2–5 wt.% La is the most optimal quantity for improving the catalyst activity and stability, as well as the CO2 chemisorption. The limitations and directions for future research in the reforming of methane were discussed.

Funder

Jiangsu Six Summit Talent Project

Publisher

MDPI AG

Reference128 articles.

1. A review on research status of hydrogen production by methane reforming;Wang;Mod. Chem. Ind.,2020

2. Research status of catalyst support for reforming hydrogen production;Li;Appl. Chem. Ind.,2022

3. The chemistry of methane reforming with carbon dioxide and its current and potential applications;Edwards;Fuel Process. Technol.,1995

4. Catalysts for CO2 reforming of CH4: A review;Li;J. Mater. Chem. A,2021

5. Well-dispersed Rh nanoparticles with high activity for the dry reforming of methane;Faroldi;Int. J. Hydrogen Energy,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3