Hydrochloric Acid Catalyzed Hydrothermal Treatment to Recover Phosphorus from Municipal Sludge

Author:

Liu Kai1,Xue Yang2,Zhai Yawei2,Zhou Lisong3,Kang Jian2

Affiliation:

1. School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China

2. Faculty of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China

3. Karamay Shuntong Environmental Technology Co., Ltd., Karamay 834000, China

Abstract

Resource utilization of sludge is critical because traditional sludge treatment methods cause a large amount of nutrient loss. This study investigated the impact of hydrochloric acid quantity, reaction temperature, and time on phosphorus release and migration from municipal sludge during hydrothermal treatment and designed a sludge disposal method for the recovery and utilization of phosphorus resources. We know that hydrochloric acid destroys the complexation of calcium and phosphorus precipitates, leading to the selective transfer of phosphorus to the liquid phase, and that the addition of 1–5% hydrochloric acid corresponds to a phosphorus extraction rate in the range of 0.3–98%. When hydrochloric acid is added, a change in temperature and reaction time has a negligible effect on phosphorus. Phosphorus can be recovered using the liquid product obtained under the optimal hydrothermal reaction conditions (adding 5% HCl at 205 °C for 30 min). After adjusting the pH value and adding the magnesium source, struvite (MgNH4PO4·6H2O) can be precipitated quickly and with high purity. At a cost of USD 27.8/ton of sludge, this method can recover 94% of the phosphorus in the sludge, and the bioavailable phosphorus ratio of the product is 93%, therefore, providing an important alternative to existing phosphorus recovery technologies.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Karamay Innovative Environment Construction Plan Project

Project of Cooperation between Polytechnic and Enterprises in Karamay

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3