Forming a Cu-Based Catalyst for Efficient Hydrogenation Conversion of Starch into Glucose

Author:

Zhu Shenghua1,Li Jue1,Cheng Fuchang1,Liang Jinghua2

Affiliation:

1. CIMC ENTECH, 95 Yangcun 3rd Road, Dachang Street, Jiangbei New District, Nanjing 210048, China

2. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China

Abstract

A pellet-forming as-catalyst, CuO/Al2O3, was prepared by the precipitation–tablet molding method and characterized by the Brunner–Emmet–Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) techniques and TEM. The characterization results showed that the formed CuO/Al2O3 was in situ reduced to Cu/Al2O3 and Cu2O/ Al2O3 catalysts in the reaction system. The catalytic performance of catalyzing hydrogenation starch into glucose was investigated in an autoclave over CuO/Al2O3. The yield of glucose reached 83.16% at a temperature of 160 °C, a pressure of 1.8 MPa, a 100 g starch solution of 15 wt%, a catalyst dosage of 2.25%, a reaction time of 4 h, and a rotational speed of 630 r/min. The reusability of the catalyst was evaluated, and the glucose yield did not decrease obviously even after being reused for five consecutive cycles. Starch was converted into glucose through the synergistic action of Cu+ and Cu0 catalysis. This work is expected to provide valuable insights into the design of catalysts and the hydrogenation process for efficient starch hydrogenation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3