Enhancing Catalytic Efficiency in Long-Chain Linear α-Olefin Epoxidation: A Study of CaSnO3-Based Catalysts

Author:

Zhang Min123,Xiang Hongwei12,Wen Xiaodong123

Affiliation:

1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

2. National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing 101400, China

3. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

This investigation explores the synthesis of advanced catalysts for epoxidizing long-chain linear α-olefins, a pivotal process in the chemical industry for generating critical intermediates. Employing a hydrothermal technique, we developed four distinct catalysts (CS-1–4), methodically modulating the Ca/Sn ratio to elucidate its impact on the catalysts’ physicochemical properties. Our research uncovered that an escalated Ca/Sn ratio induces a morphological shift from octagonal to cubic structures, concomitant with a diminution in particle size and an enhancement in specific surface area. Significantly, the CS-3 catalyst outperformed others in 1-octene epoxidation, an efficacy attributed to its augmented surface alkalinity and proliferation of medium-strength alkaline sites, likely emanating from increased surface oxygen defects. Subsequent hydrogen reduction of CS-3 further amplified these oxygen defects, yielding a 10% uptick in catalytic activity. This correlation underscores the potential of oxygen defect manipulation in optimizing catalytic efficiency. Our findings contribute a novel perspective to the development of robust, high-performance catalysts for α-olefin epoxidation, seamlessly aligning with the principles of sustainable chemistry.

Funder

National Key R&D Program of China

National Science Fund for Distinguished Young Scholars of China

CAS Project for Young Scientists in Basic Research

Key Research Program of Frontier Sciences CAS

Major Research plan of the National Natural Science Foundation of China

Informatization Plan of Chinese Academy of Sciences

Autonomous Research Project of SKLCC

Synfuels China, Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3