Direct Conversion of Ethanol to Propylene over Zn-Modified HBeta Zeolite: Influence of Zinc Precursors

Author:

Bai Ting1,Li Xiaohui1ORCID,Ding Liang1ORCID,Wang Jin1,Xiao Yong-Shan2,Cao Bin1

Affiliation:

1. College of Chemistry and Chemical Engineering, Xi’an Shiyou University, No. 18, East Dianzier Road, Xi’an 710065, China

2. School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang’an Avenue, Xi’an 710119, China

Abstract

A series of Zn-modified HBeta (Zn/HBeta) catalysts were prepared via the wetness impregnation method with different zinc precursors such as ZnSO4·7H2O, ZnCl2, C4H6O4Zn·2H2O and Zn(NO3)2·6H2O, and their catalytic performance in the conversion of ethanol to propylene reaction was evaluated. Results indicate that the amount and strength distribution of the acid sites of the Zn/HBeta catalysts were easily tuned by employing different types of zinc precursors. More importantly, when the zinc species were introduced to the HBeta, the propylene yield was significantly enhanced, whereas the yields of ethylene and C2–C4 alkanes were remarkably suppressed. For the catalyst prepared by using the ZnCl2 precursor, a higher propylene yield of up to 43.4% for Zn/HBeta-C was achieved as a result of the moderate amount and strength distribution of acid sites. The average coking rate of the used Zn/HBeta catalysts strongly depended on the amount of total acid sites, especially the strong acid sites, i.e., the higher the amount of total acid sites of the catalyst, the greater the average coking rate. For the catalyst prepared by using the ZnSO4·7H2O precursor, Zn/HBeta-S exhibited a better stability even after depositing more coke, which was due to the higher amount of strong acid sites.

Funder

Key Research and Development Program of Shaanxi province of China

Natural Science Basic Research Plan in Shaanxi Province of China

Special Research Projects of Shaanxi Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3