Investigating the Potential of Green-Fabricated Zinc Oxide Nanoparticles to Inhibit the Foodborne Pathogenic Bacteria Isolated from Spoiled Fruits

Author:

Fouda Amr12ORCID,Abdel-Rahman Mohammed Ali1ORCID,Eid Ahmed M.1ORCID,Selim Samy3ORCID,Ejaz Hasan3ORCID,Alruwaili Muharib3ORCID,Manni Emad3,Almuhayawi Mohammed S.4ORCID,Al Jaouni Soad K.5ORCID,Hassan Saad El-Din1ORCID

Affiliation:

1. Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo 11884, Egypt

2. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China

3. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia

4. Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia

5. Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

In the current investigation, the antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) formed by an aqueous extract of Psidium guajava leaves against foodborne pathogenic bacterial strains was investigated. To achieve this goal, 33 bacterial isolates were obtained from spoiled fruits. Among these isolates, 79% showed cellulase activity, 82% showed amylase activity, 81% exhibited xylanase potential, and 65% exhibited lipase activity. Moreover, 12 isolates showed complete hemolysis (β-hemolysis). The identification of these isolates was done using sequencing and amplification of 16s rRNA as Staphylococcus aureus (two strains), Pseudomonas syringae (one strain), E. coli (two strains), Salmonella typhimurium (two strains), Listeria monocytogenes (one isolate), Bacillus cereus (two isolates), and Bacillus subtilis (two isolates). The formed ZnO-NPs by aqueous Psidium guajava leaf extract were characterized using UV, FT-IR, TEM, EDX, XRD, DLS, and Zeta potential. The data revealed the successful formation of a spherical shape, crystallographic structure, and well-arranged ZnO-NPs. FT-IR showed the effect of different functional groups in the plant extract in the formation of ZnO-NPs through reducing, capping, and stabilizing of end products. Moreover, EDX analysis showed that the Zn ion occupied the main component of the produced NPs. Interestingly, the obtained bacterial strains showed varied sensitivity toward green-synthesized ZnO-NPs. The growth inhibition of foodborne pathogenic strains by ZnO-NPs was concentration dependent, forming a zone of inhibition in the range of 20–23 mm at a concentration of 200 µg mL−1, which decreased to 15–18 mm at 100 µg mL−1. Moreover, the values of MIC were 25 and 50 µg mL−1 based on the bacterial strain. Overall, the green-synthesized ZnO-NPs can be a useful approach for inhibiting the growth of spoilage bacterial strains that destroy fruits and hence reduce the harmful effects of traditional treatment methods on the environment and human health.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3