Photocatalytic Degradation of Vehicle Exhaust by Nano-TiO2 Cement Slurry: Experimental Factors and Field Application

Author:

Kuang Yachuan1,Ding Fuzheng1,Peng Zhiwei1,Fan Fan1,Zhang Zhaohuan2,Ji Xiaoyong3

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

2. Economic and Technical Research Institute of State Grid Shandong Electric Power Company, Jinan 250021, China

3. Traffic Construction Quality and Safety Supervision Bureau of Hunan Province, Changsha 410116, China

Abstract

Nano-TiO2 combined with cement slurry can be utilized to degrade nitrogen oxides (NOx) in vehicle exhaust, making it an excellent photocatalytic material for air purification. In practice, environmental factors can significantly affect the photocatalytic performance. In this study, a vehicle exhaust test system was developed, and the test methods and evaluation criteria for the degradation test are provided. This study investigated the photocatalytic degradation of NO2 using nano-TiO2 cement slurry through laboratory tests. The effects of temperature, relative humidity, ultraviolet (UV) radiation flux, cement slurry thickness, surface dust adherence, and the number of water rinsing cycles were examined. Additionally, nano-TiO2 cement slurries were applied to an expressway toll station. The results showed that the efficiency of photocatalytic degradation was significantly influenced by temperature and UV radiation flux, while the thickness of the cement slurry had minimal impact. The photocatalytic degradation efficiency was negatively correlated to the relative humidity, when the relative humidity of the cement slurry specimens was high. This is because the excess water (H2O) competes with NO2 for adsorption. The photocatalytic performance of the samples was significantly reduced by surface dust and rain erosion, as both led to a decrease in the amount of nano-TiO2 participating in the reaction. Furthermore, the photocatalytic material has wide-ranging potential applications. The findings of this study would support the promotion of environmentally friendly roads as a strategy to combat air pollution.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province, China

Fundamental Research Funds for Central Universities of Central South University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3