A Study on the Pyrolysis Behavior and Product Evolution of Typical Wood Biomass to Hydrogen-Rich Gas Catalyzed by the Ni-Fe/HZSM-5 Catalyst

Author:

Li Xueqin12,Lu Yan1,Liu Peng1,Wang Zhiwei34,Huhe Taoli1,Chen Zhuo5,Wu Youqing2,Lei Tingzhou1

Affiliation:

1. Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China

2. Department of Chemical Engineering for Energy Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China

3. School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China

4. Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou 450001, China

5. School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Abstract

The thermo-chemical conversion of biomass wastes is a practical approach for the value-added reclamation of bioenergy in large quantities, and pyrolysis plays a core role in this process. In this work, poplar (PR) and cedar (CR) were used as staple wood biomasses to investigate the apparent kinetics of TG/DTG at different heating rates. Secondly, miscellaneous wood chips (MWC), in which PR and CR were mixed in equal proportion, were subjected to comprehensive investigations on their pyrolysis behavior and product evolution in a fixed bed reactor with pyrolysis temperature, catalyst, and the flow rate H2O steam as influencing factors. The results demonstrated that both PR and CR underwent three consecutive pyrolysis stages, the TG/DTG curves shifted to higher temperatures, and the peak temperature intervals also enhanced as the heating rate increased. The kinetic compensation effect expression and apparent reaction kinetic model of CR and PR pyrolysis were obtained based on the law of mass action and the Arrhenius equation; the reaction kinetic parameter averages of Ea and A of its were almost the same, which were about 72.38 kJ/mol and 72.36 kJ/mol and 1147.11 min−1 and 1144.39 min−1, respectively. The high temperature was beneficial for the promotion of the pyrolysis of biomass, increased pyrolysis gas yield, and reduced tar yield. This process was strengthened in the presence of the catalyst, thus significantly increasing the yield of hydrogen-rich gas to 117.9 mL/g-biomass. It was observed that H2O steam was the most effective activator for providing a hydrogen source for the whole reaction process, promoted the reaction to proceed in the opposite direction of H2O steam participation, and was beneficial to the production of H2 and other hydrocarbons. In particular, when the flow rate of H2O steam was 1 mL/min, the gas yield and hydrogen conversion were 76.94% and 15.90%, and the H2/CO was 2.07. The yields of H2, CO, and CO2 in the gas formation were significantly increased to 107.35 mL/g-biomass, 53.70 mL/g-biomass, and 99.31 mL/g-biomass, respectively. Therefore, H2 was the most dominant species among gas products, followed by C-O bond-containing species, which provides a method for the production of hydrogen-rich gas and also provides ideas for compensating or partially replacing the fossil raw material for hydrogen production.

Funder

National Key R&D Program of China

2020-EU China Sustainable Aviation Fuel

Changzhou Sci & Tech Program

Key R&D Program Project in Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3