Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen

Author:

Blaschke Fabio1ORCID,Prasad Biswal Prabhu2ORCID,Charry Eduardo Machado2ORCID,Halper Katharina1,Fuchs Maximilian2ORCID,Resel Roland2ORCID,Zojer Karin2ORCID,Lammer Michael13,Hasso Richard1,Hacker Viktor1ORCID

Affiliation:

1. Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria

2. Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria

3. BEST–Bioenergy and Sustainable Technologies GmbH, Inffeldgasse 21b, 8010 Graz, Austria

Abstract

Green hydrogen is central to the energy transition, but its production often requires expensive materials and poses environmental risks due to the perfluorinated substances used in electrolysis. This study introduces a transformative approach to green hydrogen production via chemical looping, utilizing an iron-based oxygen carrier with yttrium-stabilized zirconium oxide (YSZ). A significant innovation is the replacement of Al2O3 with SiO2 as an inert support pellet, enhancing process efficiency and reducing CO2 contamination by minimizing carbon deposition by up to 700%. The major findings include achieving a remarkable hydrogen purity of 99.994% without the need for additional purification methods. The Fe-YSZ oxygen carrier possesses a significantly higher pore volume of 323 mm³/g and pore surface area of 18.3 m²/g, increasing the pore volume in the iron matrix by up to 50%, further improving efficiency. The catalytic system exhibits a unique self-cleaning effect, substantially reducing CO2 contamination. Fe-YSZ-SiO2 demonstrated CO2 contamination levels below 100 ppm, which is particularly noteworthy. This research advances our understanding of chemical looping mechanisms and offers practical, sustainable solutions for green hydrogen production, highlighting the crucial synergy between support pellets and oxygen carriers. These findings underscore the potential of chemical looping hydrogen (CLH) technology for use in efficient and environmentally friendly hydrogen production, contributing to the transition to cleaner energy sources.

Funder

Austrian Science Fund

Austrian Research Promotion Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3