Reaction Mechanisms and Production of Hydrogen and Acetic Acid from Aqueous Ethanol Using a Rn-Sn/TiO2 Catalyst in a Continuous Flow Reactor

Author:

Nomura Takashi1ORCID,Zhao Yuanyuan1,Minami Eiji1,Kawamoto Haruo1ORCID

Affiliation:

1. Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Abstract

The catalytic reforming of bioethanol can produce green hydrogen (H2) and acetic acid (AcOH). In the present study, the conversion of aqueous ethanol (EtOH) over 4 wt%Ru-4 wt%Sn/TiO2 in a flow reactor was investigated at different temperatures at 0.1 MPa or at various pressures at 260 °C. The ethanol conversion was rather slow in liquid water, while the reactivity increased significantly when water was evaporated. Under gas-phase conditions at 0.1 MPa, the conversion rate increased with increasing reaction temperature, but the AcOH yield and H2 purity decreased due to by-production of CH4, CO, and CO2. The CH4 and CO generated by fragmentation of acetaldehyde (AA), an intermediate, were suppressed by increasing reaction pressure, although the formation of CH4 and CO2 generated from AcOH was pressure independent. Thus, the highest-pressure conditions in steam at a given reaction temperature are preferred for the production of pure H2. The initial step, EtOH → AA, was the rate-determining reaction, and the model experiments using AA as a substrate showed that the Cannizzaro reaction of two AA molecules to form EtOH and AcOH occurred preferentially. This oxidation system was confirmed to be effective at EtOH concentrations of up to 500 g/L in water.

Funder

JST-Mirai Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3