Catalytic Effect of Alkali Metal Ions on the Generation of CO and CO2 during Lignin Pyrolysis: A Theoretical Study

Author:

Jiang Xiaoyan1ORCID,Han Yiming1,Li Baojiang1,Liu Ji2,Zhou Guanzheng2,Du Xiaojiao1,Wei Shougang2,Meng Hanxian2,Hu Bin2ORCID

Affiliation:

1. School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China

2. National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China

Abstract

A density functional theory method was employed to conduct theoretical calculations on the pyrolysis reaction pathways of lignin monomer model compounds with an aldehyde or carboxyl group under the catalytic effect of alkali metal ions Na+ and K+, exploring their influence on the formation of the small molecular gaseous products CO and CO2. The results indicate that Na+ and K+ can easily bind with the oxygen-containing functional groups of the lignin monomer model compounds to form stable and low-energy complexes. Except for benzaldehyde and p-hydroxybenzaldehyde, Na+ and K+ can facilitate the decarbonylation reactions of other benzaldehyde-based and phenylacetaldehyde-based lignin monomer model compounds during the pyrolysis process, thereby enhancing the generation of CO. When the characteristic functional groups on the benzene rings of benzaldehyde-based and phenylacetaldehyde-based lignin monomer model compounds are the same, the phenylacetaldehyde-based ones are more prone to undergo decarbonylation than the benzaldehyde-based ones. Additionally, both Na+ and K+ can inhibit the decarboxylation reactions of benzoic acid-based and phenylacetic acid-based lignin monomer model compounds, thereby restraining the formation of CO2. When the characteristic functional groups on the benzene rings of benzoic acid-based and phenylacetic acid-based lignin monomer model compounds are the same, the phenylacetic acid-based ones are more difficult to undergo decarboxylation than the benzoic acid-based ones.

Funder

National Natural Science Foundation of China

Qing Lan Project

Natural Science Foundation of the Jiangsu Higher Education Institutions of China Funded Major Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3