An Efficient Photocatalytic Oxygen Evolution System with the Coupling of Polyoxometalates with Bismuth Vanadate

Author:

Ong Boon Chong1,Lim Teik-Thye2,Xue Can1,Dong Zhili1ORCID

Affiliation:

1. School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

2. School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Abstract

In this work, a coupling system consisting of bismuth vanadate (BiVO4) and cobalt-based polyoxometalates (Co-POMs) was developed to enhance the oxygen evolution reaction. Crystallization-driven self-assembly and the wet chemical synthesis method were deployed in synthesizing Co-POMs and monoclinic–tetragonal mixed–phase BiVO4, respectively. The introduction of Co-POMs into a BiVO4-containing mixture significantly enhanced the water oxidation reaction, with a more than twofold increment in the total amount of oxygen evolved. For instance, 461.2 µmol of oxygen was evolved from the system containing 20 mg of Co-POMs compared to 195 µmol of oxygen produced from a pristine BiVO4 system. This extraordinary improvement in the oxygen evolution reaction indicates the existence of a positive synergic effect between BiVO4 and Co-POMs, in which Co-POMs could act as effective cocatalysts to extract photogenerated charge carriers generated by BiVO4 and improve the charge transfer process. However, the amount of oxygen produced was slightly reduced to 440.7 µmol with an increase in AgNO3 loading from 30 mg to 60 mg. This unforeseen phenomenon could be elucidated by the shielding effect of silver particles, in which a higher AgNO3 loading led to a more prominent shielding effect. The presence of silver nanoparticles on post-reaction BiVO4 was confirmed by TEM and XPS analysis. This newly established process scheme provides an insight into the development of an efficient photocatalytic oxygen evolution system in realizing future commercial applications toward green energy production.

Funder

Ministry of Education, Singapore

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3