The Green Preparation of Mesoporous WO3/SiO2 and Its Application in Oxidative Desulfurization

Author:

Zhang Yinhai1,Liu Xiaoxue2,Zhao Ruyu1,Zhang Jingwei1,Zhang Lanfen1,Zhang Wei1,Hu Jian1,Li Hao1ORCID

Affiliation:

1. College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China

2. College of Agriculture, Yangtze University, Jingzhou 434000, China

Abstract

Recently, supported WO3-based catalysts have been widely used in oxidative desulfurization (ODS) due to their advantages of easy separation, high activity, and being environment-friendly. In this work, supported mesoporous WO3/SiO2 catalysts have been prepared using an incipient-wetness impregnation method with agricultural waste rice husks as both a silicon source and mesoporous template, and phosphotungstic acid as a tungsten source. The effects of different calcination temperatures and WO3 loadings on the ODS performance of samples are studied, and the appropriate calcination temperature and WO3 loading are 923 K and 15.0 wt.%, respectively. The relevant characterization results show that, compared with pure WO3, the specific surface area and mesopore volume of WO3/SiO2 samples are greatly increased. Due to (a) high WO3 loading, (b) high specific surface area, and (c) nanoscale WO3 grains uniformly dispersed on the surface of the mesoporous SiO2 carrier, active sites of WO3/SiO2 catalysts are greatly increased, and their catalytic activities are improved. After the sixth and eighth runs in the ODS of dibenzothiophene and 4,6-dimethyldibenzothiophene, respectively, the WO3/SiO2 catalyst still maintains high catalytic activity (>99.0%) despite the presence of a partial loss of WO3. In addition, with the aid of the UV-Vis technique, the tungsten-peroxo species, the active intermediates in the ODS reaction catalyzed by the WO3/SiO2 catalyst, are captured. Finally, a possible mechanism for the ODS of bulky organic sulfides using the WO3/SiO2 catalyst is proposed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3