Removal of Emerging Organic Pollutants by Zeolite Mineral (Clinoptilolite) Composite Photocatalysts in Drinking Water and Watershed Water

Author:

Zhou Pengfei123,Wang Fei12,Shen Yanbai3ORCID,Duan Xinhui12,Zhao Sikai3ORCID,Chen Xiangxiang4,Liang Jinsheng12

Affiliation:

1. Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China

2. Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China

3. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

4. Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China

Abstract

One of the most challenging problems for people around the world is the lack of clean water. In the past few decades, the massive discharge of emerging organic pollutants (EOPs) into natural water bodies has exacerbated this crisis. Considerable research efforts have been devoted to removing these EOPs due to their biotoxicity at low concentrations. Heterogeneous photocatalysis via coupling clay minerals with nanostructured semiconductors has proven to be an economical, efficient, and environmentally friendly technology for the elimination of EOPs in drinking water and watershed water. Natural zeolite minerals (especially clinoptilolites) are regarded as appropriate supports for semiconductor-based photocatalysts due to their characteristics of having a low cost, environmental friendliness, easy availability, co-catalysis, etc. This review summarizes the latest research on clinoptilolites used as supports to prepare binary and ternary metal oxide or sulfide semiconductor-based hybrid photocatalysts. Various preparation methods of the composite photocatalysts and their degradation efficiencies for the target contaminants are introduced. It is found that the good catalytic activity of the composite photocatalyst could be attributed to the synergistic effect of combining the clinoptilolite adsorbent with the semiconductor catalyst in the heterogeneous system, which could endow the composites with an excellent adsorption capacity and produce more e−/h+ pairs under suitable light irradiation. Finally, we highlight the serious threat of EOPs to the ecological environment and propose the current challenges and limitations, before putting the zeolite mineral composite photocatalysts into practice. The present work would provide a theoretical basis and scientific support for the application of zeolite-based photocatalysts for degrading EOPs.

Funder

National Key Research and Development Program of China

Central Government to Guide Local Scientific and Technological Development of China

Postdoctoral Funding Project of Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3