Hydrogenation of Styrene-Butadiene Rubber Catalyzed by Tris(triisopropylphosphine)hydridorhodium(I)

Author:

Liu Minghui12,Li Wenxin3,Zheng Chengzhuo3,Yuan Fei3,Wang Hui3ORCID,Wang Chengdong3,Pan Qinmin4,Rempel Garry L.2

Affiliation:

1. CNOOC Enertech Safety & Environmental Protection Branch, Tianjin 300000, China

2. Department of Chemical Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada

3. School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

4. College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China

Abstract

The hydrogenation of C=C bonds in styrene−butadiene rubber (SBR), catalyzed by RhH(P(i-Pr)3)3, was experimentally investigated. Tris(triisopropylphosphine)hydridorhodium(I), RhH(P(i-Pr)3)3 (i-Pr=CH(CH3)2) was prepared by using rhodium chloride (RhCl3), tetrahydrofuran (THF), triisopropylphosphine (P(i-Pr)3) and a sodium mercury amalgam. The effect of catalyst/polymer ratio, reaction temperature, and hydrogen pressure on the reactivity of the catalytic system has been studied. The optimal experimental condition was obtained. The hydrogenated styrene-butadiene rubber (HSBR) was analyzed by FT-IR and 1H-NMR. In the absence of any additives, the conversion of C=C bonds in SBR could easily reach 95% in a short period of time, and no obvious cross-linking was observed. The dynamic properties of SBR did not change after the hydrogenation of the unsaturated C=C bonds. A preliminary reaction mechanism was also proposed. This study provides a new route, not only for the chemical modification of SBR by using a rhodium complex but also for the hydrogenation of other unsaturated polymers, such as diene-based rubbers.

Funder

Natural Science and Engineering Research Council of Canada

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3