Adjacent Reaction Sites of Atomic Mn2O3 and Oxygen Vacancies Facilitate CO2 Activation for Enhanced CH4 Production on TiO2-Supported Nickel-Hydroxide Nanoparticles

Author:

Saravanan Praveen Kumar1ORCID,Bhalothia Dinesh2ORCID,Beniwal Amisha2,Tsai Cheng-Hung1,Liu Pin-Yu1,Chen Tsan-Yao2ORCID,Ku Hong-Ming3,Chen Po-Chun1

Affiliation:

1. Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2. Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan

3. Chemical Engineering Practice School, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

Abstract

The catalytic conversion of carbon dioxide (CO2) to methane (CH4) through the “Sabatier reaction”, also known as CO2 methanation, presents a promising avenue for establishing a closed carbon loop. However, the competitive reverse water gas shift (RWGS) reaction severely limits CH4 production at lower temperatures; therefore, developing highly efficient and selective catalysts for CO2 methanation is imperative. In this regard, we have developed a novel nanocatalyst comprising atomic scale Mn2O3 species decorated in the defect sites of TiO2-supported Ni-hydroxide nanoparticles with abundant oxygen vacancies (hereafter denoted as NiMn-1). The as-prepared NiMn-1 catalyst initiates the CO2 methanation at a temperature of 523 K and delivers an optimal CH4 production yield of 21,312 mmol g−1 h−1 with a CH4 selectivity as high as ~92% at 573 K, which is 45% higher as compared to its monometallic counterpart Ni-TiO2 (14,741 mmol g−1 h−1). Physical investigations combined with gas chromatography analysis corroborate that the exceptional activity and selectivity of the NiMn-1 catalyst stem from the synergistic cooperation between adjacent active sites on its surface. Specifically, the high density of oxygen vacancies in Ni-hydroxide and adjacent Mn2O3 domains facilitate CO2 activation, while the metallic Ni domains trigger H2 splitting. We envision that the obtained results pave the way for the design of highly active and selective catalysts for CO2 methanation.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3