The Facile Synthesis of Nickel-Doped Composite Magnetic Ni@CoO@ZIF-67 as an Efficient Heterogeneous Catalyst for the Ring-Opening Polymerization of L-Lactide

Author:

Chen Xingxing12,Wu Qing12,Chaemchuen Somboon13ORCID,Verpoort Francis145ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

3. Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand

4. Research School of Chemical and Biomedical Technologies, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia

5. Joint Institute of Chemical Research (FFMiEN), Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia

Abstract

The ring-opening polymerization of L-lactide is a crucial route for producing biodegradable polylactides (PLAs). Developing an efficient catalyst for this process poses significant challenges. Herein, we report the successful incorporation of nickel during the crystallization of ZIF-67, the derivation of the abundant and stable CoO source, to obtain the composite magnetic Ni@CoO@ZIF-67 using the solid-state thermal (SST) method. The characterization of the resulting materials revealed that nickel atoms are well dispersed in the composite CoO@ZIF-67, imparting additional magnetic properties. The composite Ni@CoO@ZIF-67 demonstrated superior performance as a heterogeneous catalyst for the ring-opening polymerization of L-lactide compared to reference materials such as Ni-Hmim, CoO, ZIF-67, and CoO@ZIF-67. Furthermore, the magnetic property of Ni@CoO@ZIF-67 offers practical advantages, enabling easier separation and recycling of the catalyst. Notably, the SST method facilitates the single-step synthesis of composite magnetic Ni@CoO@ZIF-67 under solvent-free conditions, representing a significant advancement in catalyst development. This approach not only simplifies the synthesis process but also inspires further developments of heterogeneous magnetic catalysts for a variety of effective and diverse reactions.

Funder

State Key Lab of Advanced Technology for Materials Synthesis and Processing for financial support

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3