Photocatalytic Degradation of Paracetamol and Antibacterial Activity of La-Modified TiO2 Obtained by Non-Hydrolytic Sol–Gel Route

Author:

Stoyanova Angelina1,Hitkova Hristina1,Kaneva Nina2,Bachvarova-Nedelcheva Albena3ORCID,Iordanova Reni3ORCID,Marinovska Polya1

Affiliation:

1. Department Chemistry and Biochemistry, Faculty of Pharmacy, Medical University-Pleven, Kl. Ohridski Str., 1, 5800 Pleven, Bulgaria

2. Laboratory of Nanoparticle Science and Technology, Department of General and Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria

3. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bld. 11, 1113 Sofia, Bulgaria

Abstract

The current study aims to synthesize and analyze both pure and La-doped TiO2, and evaluate the photocatalytic and antibacterial activity of as-prepared samples. Doped and undoped samples were prepared by the non-hydrolytic sol–gel method from titanium(IV) chloride, benzyl alcohol, and lanthanum(III) nitrate followed by thermal treatment. Lanthanum content in synthesized samples was 0.4, 1, and 5 mol%. The resulting nanopowders’ structure and morphology were described using XRD, IR, and UV–Vis analysis. The average particle sizes of pure and doped TiO2 were about 6–15 nm and anatase was found to be a dominant crystalline phase in the samples. It was observed that particle sizes decreased on increasing La content. The photocatalytic activity of the pure and La-doped sol–gel powders was estimated in the decomposition of paracetamol in distilled water using ultraviolet light illumination. Doping with lanthanum ions has been shown to increase the photocatalytic properties on the degradation of paracetamol. Furthermore, the annealed catalysts (pure and La3+ doped) showed increased photocatalytic activity and degradation of the analgesic in comparison with non-annealed materials. In both cases, the highest photocatalytic efficiency is observed at the optimal La3+ (1 mol%) concentration. The antimicrobial activity of 1 mol% La/TiO2 was tested against a reference strain E. coli in the presence of ultraviolet light and in dark conditions. The number of viable bacterial cells was determined by a spread plate method, and kill curves were performed. The results showed that photoactivated 1 mol% La/TiO2 exhibited a strong bactericidal effect, and in concentration, 1 mg/mL efficiently killed bacteria at an initial cell density of about 105 colony forming units in 1 mL within 15 min.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3