Structural Effect of Cu-Mn/Al2O3 Catalysts on Enhancing Toluene Combustion Performance: Molecular Structure of Polyols and Hydrothermal Treatment

Author:

Li Junjie1,Chen Wenjing2ORCID,Xu Chenghua2,Hou Xiaoxiao3,Hu Xiaodong4

Affiliation:

1. Sichuan Academy of Environmental Sciences, Chengdu 610041, China

2. Key Laboratory of Atmospheric Environment Simulation and Pollution Control, Chengdu University of Information Technology of Sichuan Province, Chengdu 610225, China

3. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China

4. Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen 529199, China

Abstract

This study presents a series of Cu-Mn/Al2O3 catalysts prepared by the polyol method to improve the toluene combustion process. The catalytic activity evaluation results showed that the different polyols have a great influence on catalyst activity, in which the catalyst prepared with glycerol through a hydrothermal reaction at 90 °C displayed the highest catalytic activity. The lowest T90 and T50 values could be achieved by CMA-GL-90 with 260 and 237 °C, respectively. Moreover, the XRD and BET results showed that the hydrothermal treatment was more favorable with Cu-Mn crystal formation, and an abundance of mesopores remained in all catalysts with a high specific surface area from 94.37 to 123.03 m2·g−1. The morphology analysis results by SEM and TEM indicated that employing glycerol coupled with hydrothermal treatment at 90 °C could enhance the formation of CuMn2O4 spinel. The toluene catalytic combustion mechanism of Cu-Mn/Al2O3 catalysts was discussed based on XPS and H2-TPR, and a high atomic ratio of Mn3+ could be obtained with 51.03%, and the ratio of Oads/Olatt also increased to 2.85 in CMA-GL-90. The increase in Mn3+ species and oxygen vacancies on the surface of catalysts exhibited excellent activity and stability for toluene combustion. These findings offer valuable insights for optimizing the design and application of Cu-Mn/Al2O3 catalysts in addressing the catalytic oxidation reactions of organic volatile compounds.

Funder

Natural Science Foundation of Sichuan Province

Science and Technology Planning Program of Sichuan Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3