Magnetic Metallic Nanoparticles Coated with Carbon for the Catalytic Removal of Bromate from Water

Author:

Ramalho Patrícia S. F.12,Soares Olívia Salomé G. P.12ORCID,Órfão José J. M.12ORCID,Pereira Manuel Fernando R.12ORCID

Affiliation:

1. LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

2. ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract

Bromate, often detected in drinking water, is associated with a significant risk of cancer. Catalytic reduction has been recognized as an effective treatment technique to remove ions by reducing them over metal catalysts in the presence of a reducing agent, usually hydrogen. This work aims to synthesize metallic magnetic nanoparticles of iron oxide (FeO) and mixed iron oxides with manganese (MnFeO), cobalt (CoFeO), and copper (CuFeO) coated with carbon via chemical vapor deposition (C-MNP) to be applied as catalysts to the reduction of bromate in water. The use of magnetic nanoparticles coated with carbon enables catalyst recovery via magnetic separation and takes advantage of the catalytic properties of the carbon materials. The iron particles proved to be the most promising catalysts for the reduction of bromate into bromide, the highest removal being obtained with the CFeO@CVD750 sample, resulting in a 99% conversion after 120 min of reaction under the conditions tested. Due to its magnetic nature, the catalytic material was easily removed after the reaction and applied in four consecutive cycles without losing its catalytic properties. These results highlight the great potential of carbon-coated magnetic nanoparticles for reducing bromate in water.

Funder

LSRE-LCM

ALiCE

Scientific Employment Stimulus—Institutional Call

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3