Affiliation:
1. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
Abstract
Typical metal–organic frameworks (MOFs) usually suffer from a limited visible light-trapping ability and easy recombination of charge carriers, hindering their photocatalytic applications. Acetylacetone (AA), leveraging its exceptional coordination capabilities, serves as a versatile and effective modifier for enhancing the photocatalytic activity of MOFs via a post-synthesis approach. The synthesis of diketone-anchored MOFs with AA can be achieved by first diazotizing the amino groups on the ligands of MOFs, followed by a condensation reaction between AA and the resulting azide. Gradient AA loadings ranging from 17% to 98% were obtained, showcasing the tunability of this approach. Interestingly, a sub-stoichiometric effect was exhibited between the AA loading and the visible photocatalytic performance of the modified photocatalyst. The singlet oxygen yields of MIL-125-AA-37% and MIL-125-AA-54% were about 1.3 times that of MIL-125-AA-17% and 3.0 times that of MIL-125-AA-98%. The improved photocatalytic activity could be attributed to the fact that the AA modification altered the electron density of the Ti metal center, leading to the creation of a significant amount of oxygen defects. This alteration resulted in a reduction in the recombination of charge carriers and thus a better charge separation. In short, AA modification provides a new strategy to maximize the visible photocatalytic performance of MOFs.
Funder
National Natural Science Foundation of China