Synthesis of In-Modified TiO2 Composite Materials from Waste Tobacco Stem Silk and Study of Their Catalytic Performance under Visible Light

Author:

Leng Junyang12,Zhao Yi2,Zhang Jindi1,Bai Xiaoli2,Zhang Anlong3,Li Quanhui3,Huang Mengyang1,Wang Jiaqiang123ORCID

Affiliation:

1. School of Chemistry and Resources Engineering, Honghe University, Mengzi 661100, China

2. School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China

3. School of Materials and Energy, Yunnan University, Kunming 650091, China

Abstract

Titanium dioxide (TiO2) catalysts are primarily utilized under ultraviolet light, and their potential in industrial applications remains largely untapped. To address this issue, our study uses a one-pot impregnation method to prepare a series of In-TiO2/TSS(X) (TSS, Tobacco stem silk. X, the molar ratio of In/Ti) catalysts. Among them, the degradation performance of the In-TiO2/TSS(2.0) material increased from 13.8% for TiO2 to an impressive 92.9%. By establishing a first-order kinetic model, it was determined that the degradation performance of the In-TiO2/TSS(2.0) material surpassed that of TiO2 by a factor of 24. Structural characterization revealed that the introduction of tobacco stem silk templates did not alter the crystal phase of TiO2 and that the main component of the catalyst remained TiO2. Not only that, an O–In structure formed on the surface of the TiO2, leading to a significant increase in the material’s specific surface area. Furthermore, principle tests were conducted, revealing significant enhancements in its light absorption capacity, intensity, and photocurrent density. Through active species trapping experiments, it was observed that, in the photocatalytic degradation process of this catalyst series, holes (h+) played the primary role, while the hydroxyl ion (·OH) and superoxide ion (·O2−) acted as auxiliary species.

Funder

the Department of Ecology and Environment of Yunnan Province

R&D Project

the Key Laboratory of Advanced Materials for Wastewater Treatment of Kunming

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3