Investigating the Role of Cs Species in the Toluene–Methanol Side Chain Alkylation Catalyzed by CsX Catalysts

Author:

Zhang Zhihui1ORCID,Wang Qingwei1,Gao Wenxiu1,Ma Chunxiang2,Yang Miaomiao1

Affiliation:

1. College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China

2. Research Institute of PetroChina Jilin Petrochemical Company, Jilin 132022, China

Abstract

The side chain alkylation of toluene with methanol was studied on a series of CsX catalysts prepared by varying the Cs species and ion exchange conditions. The effects of various parameters, such as the exchanging temperatures and times on the adsorption/activation properties of different CsX catalysts, were investigated by combining a variety of characterization means for understanding the role of Cs species in the side chain alkylation reaction. On the basis of the various characterization results and their related literature results, it can be proposed that the Cs ions located on the ion-exchanged sites of X zeolites could effectively adsorb and activate toluene molecularly through modifying the basicity of framework oxygen, whereas the cluster of cesium oxide (Cs2O) could ensure the effective conversion of methanol into formaldehyde. Additionally, Cs ions can promote the production of monodentate formate, which enhances the selectivity of styrene. However, too much Cs2O will lead to the excessive decomposition of methanol into CO2, CO, and H2, thus inhibiting the production of styrene. In summary, the presence of suitable amounts of Cs ions and Cs2O clusters plays a significant role in the formation of the side chain products of styrene and ethylbenzene.

Funder

Jilin Provincial Science and Technology Development Plan Project

Jilin Provincial Department of Education Science and Technology Research Project

Jilin Institute of Chemical Technology Doctoral Start-up Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3